
CPE 470 - Non Volatile Storage

The Vivado Way

● FPGAs → Minimally concerned with how data gets on device
○ FPGA vendor already handles flashing bitstream

● ASICs → No pre-built way of programming a chip
○ Have to build your own way of getting data onto chip

● Design Decisions:
○ What kind of external memory is needed?
○ How will it interface with that external memory?

Flash Memory
● NOR Flash

○ Lower Density
○ High Random Access Speed
○ Can write specific words
○ Used in BIOS, program

memory
● Nand Flash

○ High Density
○ Lower Random Access

Speed
○ Written and read in

sequential blocks (like a
shift register)

○ Used in SD Cards

Glossary
Flash: transistor-based reprogrammable NVM
NVM: Non-Volatile memory, maintains data
between power cycles

Flash Tradeoffs

EEPROM and FRAM

Glossary
FeRAM: Ferroelectric RAM

EEPROM: electrically erasable
programmable read-only
memory

● EEPROM
○ Oldest technology
○ Technically flash is a kind of

EEPROM
○ Now refers to byte-wise

erasable memories

● FeRAM
○ Fastest write speed
○ Lowest density
○ Expensive
○ Lasts a long time

● Both alternatives have niche advantages over flash, but are less mainstream
○ FeRAM for frequently writing smaller data
○ EEPROM for storing single bytes at a time

Throughput
● Factors

○ Frequency
■ What is the clock speed of the bus?

○ Width
■ How many data bits are transmitted per cycle?

○ Efficiency
■ What ratio of the clock cycles is used for actually retrieving data?
■ (Data Cycles) / (Total Cycles) of a transaction

● Calculation
○ Throughput = Frequency * Width * Efficiency Factor

● Metrics
○ Bits per second

■ Gbps, Mbps, etc
○ Bytes per second

■ GBps, MBps, etc
■ Bps is bps / 8

Bus Terminology
Master/Slave Terminology is outdated, to be avoided where possible!
Alternatives Include:

• Manager / Subordinate
● Good because it replaces M/S abbreviations for signals like MOSI/MISO

• Initiator / Target
● Makes sense in systems where a device could be both an initiator or a target

• Controller / Peripheral
● Useful Vocab for when interfacing with Memory Mapped IO

● Controller accesses peripherals

I2C
● 2 Wires

○ Bidirectional Data Line, Clock
● Frequency = 3.4 MHz

○ Limited by defined protocol speed
● Width = 1
● Efficiency = Data Width / (Start + Address + Read + Data + Acks + Stop)

○ Shown Example: 8 bit address, 8 bit word
○ Efficiency = 8 / 21 = 38%
○ Throughput = 3.5 * 1 * 38% = 1.3 Mbps

Glossary
I2C: Inter-Integrated Circuit

SPI Glossary
SPI: Serial Peripheral Interface

● 4 Wires
● Purely unidirectional

○ Separate input and output lines, but still 1 bit wide
● Frequency = ~40 MHz
● Width = 1
● Efficiency = Data Width / (Data + Address + Opcode Widths)

○ Example: 8 cycle opcode, 24 cycle address, 32 cycle data word
○ Efficiency = 32 / (8 + 24 + 32) = 0.5
○ Throughput = 20 Mbps

Dual SPI
● Still 4 Wires
● Differences:

○ Now Bidirectional
■ Both wires used by both controller and peripheral

○ Opcode is not split among wires
○ Need dummy cycles between address and data so flash can obtain the data

● Frequency = ~40 MHz
● Width = 2
● Efficiency = Data Width / (Data + Address + Opcode Widths)

○ Example: 8 cycle opcode, 12 cycle address, 4 dummy cycles, 16 cycle bit data word
○ Efficiency = 16 / (8 + 12 + 16) = 0.4

■ Diminishing Returns on efficiency due to opcode and dummy data
○ Throughput = 32 Mbps

QSPI, OSPI, and Beyond
● What if we keep adding parallel wires?

○ 2 + N wires (Quad SPI →6 wires, Octal SPI →10 Wires)
● Twice the wires gives almost twice the performance

○ Start seeing diminishing returns
○ Opcode and dummy time begins to dominate

SPI Variations: XIP, DDR

XIP Variation

● As we parallelize, serial opcode begins to
dominate
○ Solution → Get Rid of Opcode

● Place Flash chip in XIP mode: read only
○ Implied Read → No Need for Opcode

● Often used for processor instruction
memory
○ Usually never going to write

DDR Variation

● Change data on both clock edges
● Effectively doubles throughput

○ except for dummy time, which is a fixed
delay

Glossary
XIP: eXecute In Place
DDR: Double Data Rate

Differential Signals

SATA

References
● https://www.jblopen.com/qspi-nor-flash-part-3-the-quad-spi-protocol/
● https://www.embedded.com/flash-101-nand-flash-vs-nor-flash/
● https://www.design-reuse.com/articles/41861/execute-in-place-xip-nor-fla

sh-spi-protocol.html
● https://www.digikey.com/en/articles/the-fundamentals-of-embedded-me

mory
● https://sparxeng.com/blog/hardware/mastering-differential-signals
● https://www.mindshare.com/files/ebooks/SATA%20Storage%20Technolog

y.pdf
●

https://www.jblopen.com/qspi-nor-flash-part-3-the-quad-spi-protocol/
https://www.embedded.com/flash-101-nand-flash-vs-nor-flash/
https://www.design-reuse.com/articles/41861/execute-in-place-xip-nor-flash-spi-protocol.html
https://www.design-reuse.com/articles/41861/execute-in-place-xip-nor-flash-spi-protocol.html
https://www.digikey.com/en/articles/the-fundamentals-of-embedded-memory
https://www.digikey.com/en/articles/the-fundamentals-of-embedded-memory
https://sparxeng.com/blog/hardware/mastering-differential-signals
https://www.mindshare.com/files/ebooks/SATA%20Storage%20Technology.pdf
https://www.mindshare.com/files/ebooks/SATA%20Storage%20Technology.pdf

